Paper No. 5927

Effect of H₂S on the Corrosion Behavior of Pipeline Steels in Supercritical and Liquid CO₂ Environments

Yoon-Seok Choi, Shokrollah Hassani, Thanh Nam Vu, Srdjan Nesic Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University 342 West State Street Athens, OH 45701 USA

Ahmad Zaki B Abas Petronas Research SDN. BHD, Selangor Darul Ehsan, Malaysia

ABSTRACT

The objective of the present study is to evaluate the corrosion properties of pipeline steels in $CO_2/H_2S/H_2O$ mixtures with different amounts of water (under-saturated and saturated) related to a natural gas transportation pipeline. Corrosion behavior of carbon steel, 1Cr steel and 3Cr steel was evaluated by using an autoclave with different combinations of CO_2 partial pressure and temperature (8 MPa/25°C and 12 MPa/80°C) with 200 ppm H₂S. The corrosion rate of samples was determined by weight loss measurements. The surface morphology and the composition of the corrosion product layers were analyzed using surface analytical techniques (SEM and EDS). Results showed that the corrosion rate of materials in supercritical and liquid phase CO_2 saturated with water was very low (< 0.01 mm/y). However, adding 200 ppm of H₂S to the supercritical and liquid CO_2 system caused mild corrosion (< 0.5 mm/y). Reducing water content to 100 ppm in the supercritical and liquid CO_2 systems with 200 ppm of H₂S reduced the corrosion rate to less than 0.01 mm/y.

Key words: Supercritical/liquid CO₂, CO₂ corrosion, H₂S, carbon steel, low Cr steel

INTRODUCTION

Proven gas reserves in South East Asia are estimated at 5153 billion cubic metres (bcm), with Malaysia holding a 1047 bcm share. In the past, most of these gas fields were not economically viable due to the presence of large quantities of CO_2 (from 25% to 89%).¹ However, as the demand for energy rapidly grew, these resources become increasingly valuable. Produced gases from such fields are usually associated with potential high corrosion risks and resultant use of expensive Corrosion Resistant Alloys (CRAs). However, there is a need to better quantify the risk of corrosion associated with high pressure CO_2 environments in order to identify conditions in which mild steel may still be suitable when used with appropriate corrosion mitigation strategies. This has the potential to significantly reduce costs associated with use of CRAs for infrastructure construction.

Development of such high pressure CO₂ fields has to consider the presence of formation water which has the potential to contain a high concentration of corrosive species due to dissolved CO₂. For offshore installations, it would be too costly to dry the gas stream or to remove CO₂ gas prior to transportation of hydrocarbon gas *via* pipelines. Due to the direct impact of the presence of formation water and high pressure CO₂ on the corrosion of pipeline steel, studies related to aqueous CO₂ corrosion at high CO₂ pressure have recently been conducted. It has been reported that the corrosion rate of carbon steel under high CO₂ pressure (liquid and supercritical CO₂) without formation of protective FeCO₃ corrosion product layers is very high (\geq 20 mm/y).²⁻⁶ At certain conditions, the corrosion rate can decrease to low values (< 1 mm/y) after long-term exposures due to the formation of a protective layer of FeCO₃.⁷⁻⁹

Usually, conventional CO₂ separation technologies remove CO₂ from natural gas at low pressure and release it to the atmosphere.¹⁰ However, due to the large quantities of CO₂ present in the high pressure CO₂ gas fields, the CO₂ must be captured and transported to sequestration sites separately, which presents similar challenges as seen in CO₂ transmission related to carbon capture and storage (CCS). It has been acknowledged that dry supercritical and liquid CO₂ is not corrosive. However, recent studies have reported that the presence of trace impurities such as SO_x and NO_x can cause significant corrosion for carbon steel in supercritical and liquid CO₂ in the presence of small amounts of H₂O (below the solubility limit).¹¹⁻¹⁸ Related to gas field development, it has recently been reported that there can be small amounts of H₂S present in the high pressure CO₂ streams, whereas the effect on corrosion has thus far not been studied.

Figure 1 shows a schematic of a CO_2 transportation pipeline experiencing a temperature drop. At the inlet condition, the pressure is 12 MPa and temperature is 80°C. At this condition CO_2 is in the supercritical phase. Along the pipeline the temperature drops and consequently pressure drops and the CO_2 transitions from supercritical to liquid phase. Supercritical CO_2 at a pressure of 12 MPa and temperature of 80°C can dissolve 10,000 ppm of water.¹⁹ However, liquid CO_2 at 8 MPa and 25°C can dissolve only 3,000 ppm water.¹⁹ Therefore, temperature drop and consequently CO_2 phase transformation causes the formation of free water in the system.

Figure 1: Schematic of different parts of the pipeline with inlet and outlet conditions.

Thus, the objective of the present study was to evaluate the corrosion performance of pipeline steels in supercritical and liquid CO2 phases with and without temperature fluctuations and water condensation and also with and without H_2S . Corrosion behavior of carbon steel, 1Cr steel and 3Cr steel was evaluated using an autoclave with different combinations of CO₂ partial pressure and temperature (8 MPa/25°C and 12 MPa/80°C) at a 200 ppm H_2S concentration.

^{©2015} by NACE International. Requests for permission to publish this manuscript in any form, in part or in whole, must be in writing to NACE International, Publications Division, 15835 Park Ten Place, Houston, Texas 77084. The material presented and the views expressed in this paper are solely those of the author(s) and are not necessarily endorsed by the Association.

EXPERIMENTAL PROCEDURE

The materials used in this work are as follow:

- UNS K03014 carbon steel, named CS
- UNS G41300-1Cr steel, named 1Cr
- UNS G41300-3Cr steel, named 3Cr

All materials were analyzed for chemical composition using Atomic Emission Spectroscopy (AES). Table 1 shows chemical compositions of the three materials used in the present study.

							- <i>j</i> .			
	С	Cr	Mn	Р	S	Si	Cu	Ni	Мо	AI
CS	0.065	0.05	1.54	0.013	0.001	0.25	0.04	0.04	0.007	0.041
1Cr	0.3	0.85	0.91	0.015	0.008	0.29				
3Cr	0.08	3.43	0.54	0.006	0.003	0.3	0.16	0.06	0.32	

 Table 1

 Chemical compositions of materials used in the present study (wt.%, balance Fe).

The specimens for the corrosion tests were machined to be rectangular with a size of 1.27 cm × 1.27 cm × 0.254 cm. A 5 mm diameter hole at one end serves to hang the samples from a sample stand with a non-metallic washer. The specimens were ground with 600-grit silicon carbide (SiC) paper, cleaned with isopropyl alcohol (*i*-C₃H₇OH) in an ultrasonic bath, dried, and weighed using a balance with a precision of 0.1 mg.

The corrosion experiments were carried out in a 7.5-liter autoclave (UNS N10276). The electrolyte was a 1 wt.% NaCl solution. In the present study, the corrosion behavior of materials was evaluated in CO_2 -rich phase (Figure 2), where samples were located in the CO_2 phase. Water content at the bottom of the autoclave was varied in correspondence with the water concentration in the CO_2 phase. Once sealed, the autoclave temperature was adjusted. Then, a mixture of CO_2 and H_2S was directly injected into the autoclave to the desired H_2S concentration (200 ppm). Finally, high pressure CO_2 was added to the autoclave with a gas booster pump to the desired working pressure.

Figure 2: Schematic of specimen location in the autoclave.

The corrosion rates were determined from the weight-loss method at the end of the test. In each test, two specimens were simultaneously exposed to the corrosive environment in order to obtain an averaged corrosion rate. The specimens were removed and cleaned for 5 min in Clarke solution (20 g antimony trioxide + 50 g stannous chloride and hydrochloric acid to make 1000 ml). The specimens were then rinsed in distilled water, dried and weighed to 0.1 mg. The average corrosion rate during the test period can be calculated by the following equation:²⁰

$$Corrosionrate (mm/y) = \frac{8.76 \times 10^4 (mm \cdot hour/cm \cdot year) \times weightloss(g)}{area (cm^2) \times density (g/cm^3) \times time (hour)}$$
(1)

The morphology and compositions of corrosion products were analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS).

Corrosion in CO₂ Phase without Water Condensation

Table 2 shows the test matrix for corrosion of materials in supercritical/liquid CO_2 phases with different amounts of water and H_2S . For the water-saturated CO_2 condition, 10 g of 1 wt.% NaCl solution was added to the autoclave in order to ensure saturation. Tests with 100 ppm of water represent undersaturated conditions.

Test conditions for corrosion study in the CO_2 -rich phase without condensation									
	Material	pCO ₂ (MPa)	H₂S (ppm)	Temperature (°C)	Duration (hours)	Water content			
	CS	12	0	25	24	saturated			
H ₂ O	CS	12	0	80	24	saturated			
saturated	1Cr	12	0	25	24	saturated			
	1Cr	12	0	80	24	saturated			
	CS	12	200	80	48	saturated			
	1Cr	12	200	80	48	saturated			
H ₂ S & H ₂ O saturated	3Cr	12	200	80	48	saturated			
	CS	8	200	25	48	saturated			
	1Cr	8	200	25	48	saturated			
	3Cr	8	200	25	48	saturated			
H ₂ S & H ₂ O under- saturated	CS	12	200	25	24	100 ppm			
	CS	12	200	80	24	100 ppm			
	1Cr	12	200	25	24	100 ppm			
	1Cr	12	200	80	24	100 ppm			
						<u>ب</u>			

 Table 2

 Test conditions for corrosion study in the CO2-rich phase without condensation

*ppm = ppm_v

Corrosion in CO₂ phase with water condensation

Figure 3 shows experimental procedures for evaluating dewing corrosion behavior of materials at high pCO_2 conditions. Initially, 10 g of 1 wt.% NaCl solution was added to the autoclave in order to ensure saturation. The decrease in temperature during experiments will cause water condensation on the specimen surface and provide a condition for dissolving CO_2 and H_2S therein. It is important to note that only one cycle of dewing was simulated experimentally. Table 3 shows the test matrix for the dewing corrosion study.

Figure 3: Experimental procedures for evaluating the dewing corrosion behavior of materials in high pCO₂ environments with H₂S.

Test conditions for dewing corrosion study									
	Material	pCO ₂ (MPa)	H ₂ S (ppm)	Temperature (°C)	Water content				
Dewing	CS	12	0	80 ightarrow 25	saturated				
	1Cr	12	0	80 ightarrow 25	saturated				
	3Cr	12	0	80 ightarrow 25	saturated				
	CS	12	200	80 ightarrow 25	saturated				
	1Cr	12	200	80 ightarrow 25	saturated				
	3Cr	12	200	$80 \rightarrow 25$	saturated				

Table 3 Test conditions for dewing corrosion study

*ppm = ppmv

RESULTS AND DISCUSSION

Corrosion in CO₂ phase without water condensation

Table 4 shows the summary of corrosion rate data of three different steels in the supercritical CO_2 phase (inlet condition) and liquid CO_2 phase (outlet condition) with and without H_2S . Experimental data shows that corrosion rate in supercritical and liquid CO_2 phases saturated with water is very low (< 0.01 mm/y), consistent with previous results.^{11,12,21,22} However, adding H_2S to the supercritical and liquid CO_2 systems leads to corrosion. Furthermore, reducing water content to 100 ppm in supercritical and liquid CO_2 systems with 200 ppm H_2S reduced the corrosion rate to less than 0.01 mm/yr.

Figure 4 and Figure 5 show SEM images and EDS spectra of the corroded CS sample surface and cross-section, exposed to water-saturated supercritical CO₂ (12 MPa, 80°C) with 200 ppm of H₂S. As shown in Figure 4, the surface was covered by corrosion products that consisted of Fe and S. This indicates the formation of FeS on the steel surface under this condition. Furthermore, it can be seen from Figure 5 that it has a bilayer structure; an outer thin FeS layer and a thick/continuous inner FeCO₃ layer. A similar morphology was observed for 1Cr steel. Figure 6 shows the SEM image and EDS spectra of the corroded surface of 3Cr steel after exposure to water-saturated supercritical CO₂ (12 MPa, 80°C) with 200 ppm of H₂S. It can be seen that the surface was covered by a thin layer of sulfur-containing corrosion products. Note that the polishing marks are still visible, indicating that the corrosion of this material was minimal, compare to CS and 1Cr steel.

	Material	pCO₂ (MPa)	H₂S (ppm)	Temp. (°C)	Water content	Corrosion Rate (mm/y)		
	CS	12		25	saturated	< 0.01		
	CS	12		80	saturated	< 0.01		
	1Cr	12		25	saturated	< 0.01		
	1Cr	12		80	saturated	< 0.01		
H ₂ S & H ₂ O	CS	12	200	80	saturated	0.41		
saturated	1Cr	12	200	80	saturated	0.44		
	3Cr	12	200	80	saturated	0.05		
	CS	8	200	25	saturated	0.07		
	1Cr	8	200	25	saturated	0.13		
	3Cr	8	200	25	saturated	0.14		
	CS	12	200	25	100 ppm	< 0.01		
H ₂ S & H ₂ O	CS	12	200	80	100 ppm	< 0.01		
under-saturated	1Cr	12	200	25	100 ppm	< 0.01		
	1Cr	12	200	80	100 ppm	< 0.01		

Table 4 Summary of corrosion rate data of three different steels in CO₂ phase

Figure 4: SEM image and EDS spectra of the surface of CS after exposure to water-saturated supercritical CO₂ (12 MPa, 80°C) with 200 ppm of H₂S.

Figure 5: SEM image and EDS spectra of the cross-section of CS after exposing to watersaturated supercritical CO₂ (12 MPa, 80°C) with 200 ppm of H₂S

Figure 6: SEM image and EDS spectra of the surface of 3Cr steel after exposing to watersaturated supercritical CO₂ (12 MPa, 80°C) with 200 ppm of H₂S.

Figure 7 shows SEM images and EDS line scanning results of the corroded samples (CS, 1Cr and 3Cr steels) for their surfaces and in cross-section after exposure to water-saturated supercritical CO₂ (8 MPa, 25°C) with 200 ppm of H₂S. SEM surface analysis shows a similar morphology for corrosion products for all three steels. EDS elemental analysis shows that the corrosion product layer is mostly FeS. EDS line scanning also shows that for 3Cr steel there is a chromium rich layer close to the metal surface and underneath the FeS layer. This chromium rich layer reduces the adherence of corrosion products to the metal surface and, consequently, reduces the protectiveness of the corrosion product layer and increases the corrosion rate. It is interesting to note that under this low temperature condition (25°C), FeCO₃ was not observed on the surface of the CS and 1Cr steel.

Figure 7: SEM and EDS analyses of three different steels after corrosion experiments in liquid CO₂ phase saturated with H₂O at 8 MPa, 25°C and also containing 200 ppm of H₂S.

As shown in above results, adding 200 ppm of H_2S increased the corrosion rate of materials in the water-saturated CO_2 phase. This indicates that H_2S can react with materials in the presence of a small amount of water. A lower surface energy condition on the steel can result in development of nucleation sites for the formation of water droplets saturated with H_2S and CO_2 , which in turn leads to formation of both iron carbonate and iron sulfide on the steel surface at high temperature (80°C). Increasing the temperature from 25 to 80°C increased the corrosion rate almost 5 times because of increasing the saturated water content in the CO_2 phase (*i.e.*, from 3000 to 10000 ppm of water in the CO_2 phase)¹⁹ and also accelerating the rate of chemical and electrochemical reactions.

Figure 8 shows the surface appearance of the CS and 1Cr steel samples exposed to the supercritical CO_2 phase (12 MPa, 80°C) with 100 ppm of water and 200 ppm of H₂S for 24 hours. No visible signs of corrosion were observed on samples, *i.e.*, the surfaces appeared shiny and devoid of any type of corrosion products.

Figure 8: SEM images of the sample surface exposed to the supercritical CO₂ phase (12 MPa, 80°C) with 100 ppm of water and 200 ppm of H₂S for 24 hours: (a) CS, (b) 1Cr steel.

Corrosion in CO₂ phase with water condensation (Dewing Corrosion)

Temperature fluctuations in CO₂ transportation pipelines causes phase transitions and consequent water condensation (Figure 1). A summary of corrosion experimental data under these conditions is shown in Table 5. Without any condensation and dewing in the system, no corrosion happens without H₂S (Table 4). However, under dewing conditions, corrosion happens both in pure CO₂ and CO₂/H₂S systems. SEM and EDS surface analysis of steel after dewing corrosion of CS, 1Cr and 3Cr steels in pure CO₂ and CO₂/200 ppm H₂S systems are shown in Figure 9 and Figure 10, respectively. The corrosion products in the pure CO₂ system are mainly FeCO₃, whereas in the CO₂/H₂S system, the presence of FeS is dominant.

	Material	pCO ₂ (MPa)	H ₂ S (ppm)	Temperature (°C)	Water content	Corrosion rate (mm/y)
Dewing	CS	12	0	80 ightarrow 25	saturated	0.15
	1Cr	12	0	80 ightarrow 25	saturated	0.12
	3Cr	12	0	80 ightarrow 25	saturated	0.07
	CS	12	200	80 ightarrow 25	saturated	0.82
	1Cr	12	200	80 ightarrow 25	saturated	0.76
	3Cr	12	200	80 → 25	saturated	0.42

Table 5 Summary of corrosion rate data of three different steels in CO₂ phase.

Figure 9: SEM and EDS surface analysis of the sample surface after corrosion experiment in CO_2 phase experiencing temperature fluctuation without H_2S : (a) CS, (b) 1Cr steel, (c) 3Cr steel.

Figure 10: SEM and EDS surface analysis of the sample surface after corrosion experiment in CO₂ phase experiencing temperature fluctuation with 200 ppm of H₂S: (a) CS, (b) 1Cr steel, (c) 3Cr steel.

CONCLUSIONS

The corrosion properties of pipeline steels in CO₂/H₂S/H₂O mixtures with different amounts of water (both saturated and under-saturated) were investigated by weight loss measurements and surface analysis techniques. The following conclusions are drawn:

- There was no significant corrosion attack in the supercritical and liquid CO₂ phases in the presence of water (both saturated and under-saturated).
- The addition of 200 ppm H₂S in the CO₂ phase dramatically increased the corrosion rate of all tested materials (CS, 1Cr and 3Cr steels) when CO₂ was saturated with water.
- Under dewing conditions, corrosion happens both in pure CO₂ and CO₂/H₂S systems due to the formation of water droplets on the sample surface.
- 3Cr steel showed better corrosion resistance for the tested conditions compared with CS and 1Cr steel.

REFERENCES

- 1. J. Veron, "An overview of the non-developed gas reserves in Southeast Asia," *PetroMin* (2007): p. 22.
- M.F. Mohamed, A. Mohammed Nor, M.F. Suhor, M. Singer, Y.S. Choi and S. Nesic, "Water Chemistry for Corrosion Prediction in High-pressure CO₂ Environments," CORROSION 2011, paper no. 11375 (Houston, TX: NACE, 2011).
- A. Mohammed Nor, M.F. Suhor, M.F. Mohamed, M. Singer and S. Nesic, "Corrosion of Carbon Steel in High CO₂ Environment: Flow Effect," CORROSION 2011, paper no. 11245 (Houston, TX: NACE, 2011).
- Y. Zhang, X. Pang, S. Qu, X. Li, K. Gao, "The Relationship Between Fracture Toughness of CO₂ Corrosion Scale and Corrosion Rate of X65 Pipeline Steel Under Supercritical CO₂ Condition," *International Journal of Greenhouse Gas Control* 5 (2011): p. 1643.
- A. Mohammad Nor, M.F. Suhor, M.F. Mohamed, M. Singer, S. Nesic, "Corrosion of Carbon Steel in High CO₂ Containing Environments: the Effect of High Flow Rate," CORROSION 2012, paper no. 0001683 (Houston, TX: NACE, 2012).
- Y.S. Choi, D. Young, S. Nesic, L.G.S. Gray, "Wellbore Integrity and Corrosion of Carbon Steel in CO₂ Geologic Storage Environments: A Literature Review," *International Journal of Greenhouse Gas Control* 16S (2013): p. S70.
- M.F. Suhor, M.F. Mohamed, A. Mohammad Nor, M. Singer, S. Nesic, "Corrosion of Mild Steel in High CO₂ Environment: Effect of the FeCO₃ Layer," CORROSION 2012, paper no. 0001434 (Houston, TX: NACE, 2012).
- 8. Y. Zhang, X. Pang, S. Qu, X. Li, K. Gao, "Discussion of the CO₂ Corrosion Mechanism Between Low Partial Pressure and Supercritical Condition," *Corrosion Science* 59 (2012): p. 186.
- Y.S. Choi, F. Farelas, S. Nesic, A.A.O. Magalhães, C. de Azevedo Andrade, "Corrosion Behavior of Deep Water Oil Production Tubing Material under Supercritical CO₂ Environment: Part 1—Effect of Pressure and Temperature," *Corrosion* 70 (2014): p. 38.
- 10. A. Hart, N. Gnanendran, "Cryogenic CO₂ Capture in Natural Gas," *Energy Procedia 1* (2009): p. 697.
- Y.S. Choi, S. Nesic, D. Young, "Effect of Impurities on the Corrosion Behavior of CO₂ Transmission Pipeline Steel in Supercritical CO₂-Water Environments," *Environmental Science and Technology* 44 (2010): p. 9233.
- Y.S. Choi, S. Nesic, "Effect of Water Content on the Corrosion Behavior of Carbon Steel in Supercritical CO₂ Phase with Impurities," CORROSION 2011, paper no. 11377 (Houston, TX: NACE, 2011).
- Y. Xiang, Z. Wang, C. Xu, C. Zhou, Z. Li, W. Ni, "Impact of SO₂ Concentration of the Corrosion Rate of X70 Steel and Iron in Water-Saturated Supercritical CO₂ Mixed with SO₂," *J. of Supercritical Fluids* 58 (2011): p. 286.
- 14. A.S. Ruhl, A. Kranzmann, "Corrosion in Supercritical CO₂ by Diffusion of Flue Gas Acids and Water," *J. of Supercritical Fluids* 68 (2012): p. 81.

- 15. A. Dugstad, M. Halseid, B. Morland, "Effect of SO₂ and NO₂ on Corrosion and Solid Formation in Dense Phase CO₂ Pipelines," *Energy Procedia* 37 (2013): p. 2877.
- 16. F. Farelas, Y.S. Choi, S. Nesic, "Corrosion Behavior of API 5L X65 Carbon Steel under Supercritical and Liquid CO₂ Phases in the Presence of H₂O and SO₂," *Corrosion* 69 (2013): p. 243.
- 17. O. Yevtushenko, D. Bettge, S. Bohraus, R. Bäßler, A. Pfennig, A. Kranzmann, "Corrosion Behavior of Steels for CO₂ Injection," *Process Safety and Environmental Protection* 92 (2014): p. 108.
- S. Sim, I.S. Cole, Y.S. Choi, N. Birbilis, "A Review of the Protection Strategies against Internal Corrosion for the Safe Transport of Supercritical CO₂ via Steel Pipelines for CCS Purposes," *International Journal of Greenhouse Gas Control* 29 (2014): p. 185.
- 19. Y. S. Choi, S. Nesic, "Determining the Corrosive Potential of CO₂ Transport Pipeline in High pCO₂-Water Environments," *International Journal of Greenhouse Gas Control* 5 (2011): p. 788.
- 20. ASTM Standard G31, "Standard Practice for Laboratory Immersion Corrosion Testing of Metals," in Annual Book of ASTM Standards, vol. 03. 02 (West Conshohocken, PA: ASTM International, 1994)
- S. Sim, F. Bocher, I.S. Cole, X.B. Chen, N. Birbilis, "Investigating the Effect of Water Content in Supercritical CO₂ as Relevant to the Corrosion of Carbon Capture and Storage Pipelines," Corrosion 70 (2014): p. 185.
- 22. Y. Hua, R. Barker, A. Neville, "Effect of Temperature on the Critical Water Content for General and Localised Corrosion of X65 Carbon Steel in the Transport of Supercritical CO₂," *International Journal of Greenhouse Gas Control* 31 (2014): p. 48.